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1 Regularity Estimates for Variable-Coefficient Wave Equa-
tions

1.1 Well-posedness of the initial value problem for variable-coefficient
wave equations

Today, we are interested in a concrete goal. We will be studying variable-coefficient
wave equations, PDEs of the form

Pφ = ∂µ(gµ,ν∂νφ) + bµ∂µφ+ cφ,

where the key assumption is that g is a symmetric matrix with signature (−,+,+ . . . ,+).
The example we should keep in mind is g = diag(−1, 1, 1, . . . , 1), b = 0, c = 0; this makes
P = �. We are solving the initial value problem{

Pφ = f in (0,∞)t × Rd

(φ, ∂tφ)|t=0 = (g, h) on {t = 0} × Rd.

We further assume that gµ,ν , bµ, c are bounded with bounded derivatives of all orders. We
also assume a restricted form of g (which we will later show is not much of a restriction):
gtt = −1 and gt,x

j
= 0. This means that if we write g as a matrix,

g =

[
−1 01×d

0d×1 g,

]
where g is uniformly elliptic (g � λI).

Our concrete goal is to prove the following theorem:

Theorem 1.1. The initial value problem is well-posed in Hk ×Hk−1 for all k ∈ Z. That
is,

(i) (Existence) Given (g, h) ∈ Hk ×Hk−1 and f ∈ L1
t (H

k−1), there exists a solution φ
to the initial value problem in the class Ct(Hk).
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(ii) (Uniqueness) The solution φ in Ct(Hk) to the initial value problem with (f, g, h) as
in (i) is unique.

(iii) (Continuous dependence)

sup
t
‖φ(φ, ∂tφ)‖ ≤ Ck(‖(g, h)‖Hk + ‖f‖L1

t (H
k−1)).

Here, Hk = Hk × Hk−1, and by φ ∈ Ct(I;Hk), we mean that φ ∈ Ct(I;Hk) and ∂tφ ∈
Ct(I;Hk−1).

We will use the convention that R1+d = {(t = x0, x1, . . . , xd)}. The Greek indices µ, ν
will range from 0, 1, . . . , d, while the indices j, k, ` will range from 1, . . . , d. We will also
denote gt,t = g0,0, gt,x

j
= g0,j .

Remark 1.1. The problem is time reversible. If we send t 7→ −t, the equation is
essentially unchanged.

The reference for this topic is chapters 6-7 of Ringström’s book.

1.2 Energy inequality for P

The basic ingredient in this proof is an energy inequality for P . Suppose Pφ = f . The
idea is to multiply the equation by ∂tφ and “integrate by parts.” Why should we multiply
by ∂tφ instead of φ? This is a generalization of what we do in the classical wave equation,
and we will be able to give a more insightful answer to this once we discuss calculus of
variations for problems of this type. The key observation is this integration by parts idea,
but in divergence form:

∂µ(gµ,ν∂νφ)∂tφ = −∂2
t φ∂tφ+ ∂j(g

j,k∂kφ)∂tφ

= ∂t

(
−1

2
(∂tφ)2

)
+ ∂j(g

j,k∂kφ∂tφ)− gj,k∂kφ∂j∂tφ

Since g is symmetric, this last term can be written as −gj,k∂t(∂kφ∂jφ) by symmetrizing.
Moving the ∂t to the outside, we get

= ∂t

(
−1

2
(∂tφ)2

)
− 1

2
gj,k∂jφ∂kφ+ ∂j(g

j,k∂kφ∂tφ) +
1

2
∂tg

j,k∂jφ∂kφ.

This form is nice because the terms that have the maximum number of derivatives are all
in divergence form, while the terms that don’t have the maximum number of derivatives
are not in divergence form.

Integrate this on (t0, t1)× Rd =: Rt1t0 (assuming the boundary term vanishes):∫∫
R
t1
t0

∂µ(gµ,ν∂νφ)∂tφ−
1

2

∫∫
R
t1
t0

∂tg
j,k∂jφ∂kφ
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= −
∫

Σt1

1

2
((∂tφ)2 + gj,k∂jφ∂kφ) +

∫
Σt0

1

2
((∂tφ)2 + gj,k∂jφ∂kφ

+ lim
R→∞

∫ t1

t0

∫
∂BR

νj(g
j,k∂kφ∂tφ) dAdt︸ ︷︷ ︸

=0

,

where Σt = {t} × Rd.
Denote ~φ = (φ, ∂tφ), so (φ, ∂tφ) ∈ Hk if and only if ~φ ∈ Ct(Hk).

Lemma 1.1. For φ ∈ Ct(H1),

sup
t∈[0,T ]

‖~φ‖Hk ≤ CT
(
‖~φ(0)‖H1 +

∫ T

0
‖Pφ‖L2 dt

)
.

Proof. We may assume without loss of generality that φ ∈ C∞(RT0 ) and φ(t, ·) has compact
support for each t ∈ [0, T ]. By the computation above, if

E[φ](t) =
1

2

∫
Σt

(∂tφ)2 + gj,k∂jφ∂kφdx,

then

E[φ](t1) = E[φ](0)−
∫∫

R
t1
0

∂µ(gµ,ν∂νφ) +
1

2

∫∫
R
t1
0

∂tg
j,k∂j∂kφ.

(Note that limR→∞
∫
∂BR

= 0 thanks to the support assumption. Now

∂µ(gµ,ν∂νφ) = Pφ− bµ∂µφ− cφ,

which tells us that

E[φ](t1) = E[φ](0) +

∫∫
Rt0

Pφ∂tφdx dt+

∫∫
Rt0

(bµ∂µφ∂tφ+ cφ∂tφ+ ∂tg
j,k∂jφ∂kφ) dx dt.

Call the error

E t0 =

∫∫
Rt0

|bµ∂µφ∂tφ+ cφ∂tφ+ ∂tg
j,k∂jφ∂kφ| dx dt.

We get an inequality:

sup
t1∈[0,T ]

E[φ](t1) ≤ E[φ](0) + sup
t∈[0,T

∣∣∣∣∣
∫∫

Rt0

Pφ∂tφdx dt

∣∣∣∣∣+ ET0 .

Note that E[φ] ≥ 1
2

∫
(∂tφ)2(t) dx ≥ λ

2

∫
|Dtφ|2(t) dx. Using the fundamental theorem of

calculus, ∫
|φ|2(t) dx =

∫ t

0

∫
∂φφ dx dt′ +

∫
|φ|2(0) dx
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Using Cauchy-Schwarz,

≤ 2

∫
E(t′)1/2

(∫
|φ|2(t′) dx

)1/2

dt′ +

∫
|φ|2(0) dx.

Skipping a few steps, we get

sup
t∈[0,T ]

∫
|φ|2(t) dt ≤

∫
|φ|2(0) dx+ CT sup

t∈[0,T ]
E(t).

The point here is that

sup
t∈[0,T ]

‖~φ‖H1 ≤ CT

(
‖~φ(0)‖2H1 + sup

t∈[0,T ]

∣∣∣∣∣
∫∫

RT0

Pφ∂tφdx dt

∣∣∣∣∣+ ET0

)
.

If we use Cauchy-Schwarz, we get

sup
t∈[0,T ]

∣∣∣∣∣
∫∫

Rt0

Pφ∂tφdx dt

∣∣∣∣∣ ≤
∫ T

0
‖Pφ(t)‖L2‖∂tφ‖L2 dt

≤ C
∫ T

0
‖Pφ(t)‖L2E[φ]1/2 dt

≤
∫ T

0
‖Pφ(t)‖L2dt sup

[0,T ]
E[φ]1/2

We can use Cauchy-Schwarz to absorb the energy term to the left hand side, since E[φ] ≤
C
∫

(∂tφ)2 + (Dxφ)2. We get

sup
t∈[0,t1]

‖~φ‖2H1 ≤ CT
(
‖~φ(0)‖2H1 +

∫ T

0
‖Pφ‖L2 dt+

∫ t1

0
‖φ(t)‖2H1 dt

)
.

This means that if we let D(t1) be the left hand side and D0 be the first two terms on the
right hand side, we get

D(t1) ≤ D0 +

∫ t1

0
D(t) dt.

Using Grönwall’s inequality, we get

D(t) ≤ D0 exp

(∫ t

0
dt′
)
≤ D0e

T .

This finishes the proof.
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1.3 Further regularity estimates for existence and uniqueness

We want to study something like P : Ct(Hk) → L1
t (H

k−1). This means that we should
look at the adjoint P ∗ : Ct(H

−(k−1))→ L1
t (H

−k). The dual problem here includes negative
Sobolev spaces.

Lemma 1.2. For any k ∈ Z and φ ∈ Ct(H1+k) ∩ C∞t,x,

sup
t∈[0,T ]

‖~φ(t)‖H1+k ≤ CT,k
(
‖~φ(0)‖H1+k +

∫ T

0
‖Pφ‖Hk dt

)
.

The positive regularities will give us uniqueness for the initial value problem. The
negative regularities will give us existence.

Proof. For k > 0, we commute the equation with Dα for |α| ≤ k. Then apply the previous
lemma and Grönwall’s inequality. (This technique is very similar to our previous proof of
higher elliptic regularity bounds. However, we don’t need to use a difference quotient.)

For k < 0, we work with Φ = (1 − ∆)−|k|φ. (This means that we want to look at
the solution to the elliptic problem (1 − ∆)|k|Φ = φ in Rd. Another way to write this
is Φ̂ = (1 − |ξ|2)−|k|φ̂.) We do this so that we don’t have to deal with negative Sobolev
spaces; we can study an operator that commutes well with P and use positive Sobolev
spaces, instead. The key thing to notice is that (1−∆)−` : Hs → Hs+2`. We also use the
following:

Lemma 1.3. For any s ∈ R, the Hs norm has the Fourier characterization

‖v‖Hs = ‖(1 + |ξ|2)s/2v̂‖2L2
ξ

= ‖(1−∆)s/2v‖2L2 .

When s ∈ 2Z, this agrees with our sense of derivatives.
We want to compute

‖PΦ‖2
H|k| = ‖(1 + ‖xi|2)|k|/2P̂Φ‖2L2

= 〈(1 + |ξ|2)|k|/2P̂Φ, (1 + |ξ|2)|k|/2P̂Φ〉

= 〈(1 + |ξ|2)|k|/2P̂Φ, P̂Φ〉
= 〈(1−∆)|k|PΦ, PΦ〉.

Now observe that

(1−∆)|k|PΦ = P ((1−∆)|k|Φ) + [(1−∆)|k|, P ]Φ

= Pφ+ [(1−∆)|k|, P ]︸ ︷︷ ︸
order 2|k|+ 2− 1

Φ.
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This tells us that

‖~Φ(t)‖H1+|k| = ‖~φ(t)‖H1+|k|−2|k|

= ‖φ̂(t)‖H1+k

for k < 0.
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